翻訳と辞書
Words near each other
・ Ijiraq (moon)
・ Ijiraq (mythology)
・ Ijiri Station
・ IJIS Institute
・ Ijivitari District
・ Ijjauddin Balban Iuzbaki
・ Ijji
・ Ijjodu
・ Ijjurittiak Island
・ IIT Physics Department
・ IIT Research Institute
・ IIT Schools of Management
・ IIT Stuart School of Business
・ Iita
・ Iitagawa, Akita
Iitaka dimension
・ Iitaka, Mie
・ Iitate, Fukushima
・ IITB-Monash Research Academy
・ IITM
・ IITR
・ IITRAN
・ IITT
・ IITT College of Engineering, Kala Amb
・ Iittala
・ Iitti
・ IITYWYBAD
・ IIU
・ IIUC
・ IIUI Schools


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Iitaka dimension : ウィキペディア英語版
Iitaka dimension
In algebraic geometry, the Iitaka dimension of a line bundle ''L'' on an algebraic variety ''X'' is the dimension of the image of the rational map to projective space determined by ''L''. This is 1 less than the dimension of the section ring of ''L''
:R(X, L) = \bigoplus_^\infty H^0(X, L^).
The Iitaka dimension of ''L'' is always less than or equal to the dimension of ''X''. If ''L'' is not effective, then its Iitaka dimension is usually defined to be -\infty or simply said to be negative (some early references define it to be −1). The Iitaka dimension of ''L'' is sometimes called L-dimension, while the dimension of a divisor D is called D-dimension. The Iitaka dimension was introduced by .
==Big line bundles==
A line bundle is big if it is of maximal Iitaka dimension, that is, if its Iitaka dimension is equal to the dimension of the underlying variety. Bigness is a birational invariant: If is a birational morphism of varieties, and if ''L'' is a big line bundle on ''X'', then ''f''
*
''L'' is a big line bundle on ''Y''.
All ample line bundles are big.
Big line bundles need not determine birational isomorphisms of ''X'' with its image. For example, if ''C'' is a hyperelliptic curve (such as a curve of genus two), then its canonical bundle is big, but the rational map it determines is not a birational isomorphism. Instead, it is a two-to-one cover of the canonical curve of ''C'', which is a rational normal curve.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Iitaka dimension」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.